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1+q+r i+q+r ~l+n-_. $2q+l--g d=Bz= 
, &$?I, r=- 

B 

and we obtain the following estimates for f, and t,: 

$1 (1 + 9 + r)-+*< t1 < Wl? -Jir < tz < -2% 0) 

The figure shows the dependence of the roots w1 and qzon CL. For a given value of CL the 
value of $r is greater than that of j&l in all cases. 

zoo 4 The estimates (3) show that for a given value of a t, is 
greater than tz. 

Thus we can conclude that the direction of rotation 
changes much more rapidly if the body rotates in the positive 
direction, and this agrees with the results of numerical 
experiment /2/ where a = 30", 1 o j=l andtheintervalofinte- 
gration was 4min. The firstexperiment,where' a= 50, 1 CO\= 5 

,7 
andtheintervalofintegrationwas 30sec., confirms this. The 
authors discovered the change in the direction of rotation 

1. 

2. 

3. 
4. 

kTIfd 
only in the case when the initial angular velocity was 
positive, because the interval of integration shorter than 

il. Had they used a longer interval of integration, e.g. 
2 min, they would have noticed that the change in direction 
occurs for either direction of the initial angular velocity. 

-Y* The author thanks S.Ya. Stepanov for useful discussions. 
0 0 
I III 20 e~deg. 
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THE SUFFICIENT CONDITIONS FOR THE EXISTENCE OF 
ASYMPTOTICALLY PENDULUM-LIKE MOTIONS OF A HEAVY RIGID BODY 

WITH A FIXED POINT* 

A.Z. BRYUM and G.V. GORR 

The present paper continues the study of the asymptotically pendulum-like 
motions (APM) of a heavy rigid body begun in /l/, where a specific mass 
distribution is not assumed here a priori. The first Lyapunov method 
/2/ is used to obtain new sufficient conditions for the existence of APM, 
which cannot be described by the well-known particular solutions of the 
Euler-Poisson equations. 

1. The equations of the first approximation. We shall attach to the body a 
special coordinate system /3/ and assume that the centre of mass lies intheprincipal plane 
of the ellipsoid of inertia constructed for the fixed point. Then the equations of motion 

will have the form /3/ 
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z’ = ((II - al) yz - b,zz, y’ = (a - aa) .zz + b,zy - rv.a 
z’ = (aI - a) zy + b, (z* - yB) + rv, 
v‘ = c+zvl - (sly + b,z) v,, vl’ = (az + b,y) vz - a,av 

~2’ = (a,~ + h4 v - W + by) VI 
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(1.1) 

and will admit ofthe first integrals 

az* + a'$ + %a* + Zb,+y - WV= 2lY1 
2v + v,+ av, = m, va + V'Z + vr* = f 

(I.') 

A particular solution of (1.1) describing the rotation of the body about the horizontal 
axis (the motion of a physical pendulum) is /4, 5/: 

z=rC=O, g=v*=O, z=z* =&a;%+? (1.3) 

v=v*=coscp, v'= v'* = - sin cp, vz= v** so; 

e' = ]2apr (A*+ CO~C~)]"~ 

Here h*is the normalized constant of the energy integral in the motion in question. 
The equations of the first approximation for the solution (1.3) were studied earlier in 

/5/ form the point of view of integration in closed form. The Lyapunov stability of the 
solution in question was studied in /4/ under the condition that the amplitude of the deviation 
of the centre of mass of the body from its position of stable equilibrium was small, and the 
APM of the Hess-Appel'rot gyroscope were constructed in /l/. Here we shall study the conditions 
for the existence of the non-zero eigenvalues of the first-approximation system for the motion 
of a physical pendulum, under the constraint h*>l. 

Let us write 5 = z+ + z', y = y* + z,, v'= v,* + tr, z = I* + y', v = V* -I- yp, v'= v'* +y' and adopt the 
function of time m(t) monotically increasing without limit as t-m, as the new independent 
variable, and denote differentiation with respect to 9 by a prime. 

The first-approximation system for the solution (1.3) has two closed subsystems. The 
first subsystem 

z" = -t+-lb,z, + (i - ~,-‘a,) zp (1.4) 
zq’ = (+-‘a - 1) q + a,-‘bl+, - (h2*)-'rz, 
~8' = (a&)-' [(bp* - WI*) z, + @IV* - blvl*) s] 

admits of a single integral 

and the second system 
v*z'+ vPz* +r*q =I' (4.5) 

ul' = (Q+J)-'rYIl #a' = (z*)-'vl*brl+ US (1.6) 
ua'= - (.+'y+Y'-- yI 

admits of two integrals 

WHYS - ry, = I¶, V*Y% + v1*y3 = I, (1.7) 

The integrals (1.5), (1.7) are obtained by linearizing the first integrals (1.2) in the 
neighbourhood of the solution (1.3). 

All the eigenvalues of system (1.6) are zeros /l/. Let us now investigate the eigenvalues 
of (1.4). 

Let A,B,C be the principal moments of inertia of the body and e,,e,,+(~=O) the direction 
cosines of the ray connecting the fixed point with the centre of mass in the principal axes; 
the centre of mass lies in the principal plane of the ellipsoid of inertia orthogonal to the 
axis, the moment of inertia relative to which is equal to C. We write 

a= AC-', 6= EC-’ 3. = an-1 (4 - I$) = a-yF [a (fi - 1) e,* + fl (a - 1) eg] 

p = a,-* [(a~ - (11) (a - a,) + b"] = a-‘6-l (i - a) (6 - 1) 
x = a,-lbl = &g-1 (f3 - a) c,el 

p1 = 2p + I. = a-'6-' ](6 - 1) (2 - a) ela + (a - 1) (2 - fi) e,*] 

The case of L=O was dealt with in /l/; we shall therefore assume from now on that 
a* 0. 

Using the integral (1.5), we write the variables stand zs in terms of 2' thus: 

z, = h-' (2" + x.2'), 5* = (a*)-' (I' -z' cos cp + zs sin (p) (1.8) 

The variable Z' satisfies the equation /5/ 

2 (h* + cos cp) zl” + zl’sin 'p -k (-~'cos cp + Y sin cp - 2@*) I'= -iI' (1.2) 
The relations (1.8) show that the set of eigenvalues (EV) of system (1.4) consists of 

the EV of the homogeneous equation corresponding to (1.9), and zero. 
Let us write in (1.9) I'=0 and carry out the periodic change of variable z'= (h++coscp)%. 

The change variable does not affect the EV, and transforms (1.9), when I'= 0, into the Hill 
equation 

w" - (4 (h’ + COB I#]-’ Q ((P) w = 0 (1.10) 

0 (cp) = iG@N + [4 (8~ + 25 + I) cos 'p - Sxsin ‘p]h* $ (8~ + 411.- '/*) cos 2~ - 4xsin 2~ + 8p + 4L + '/% 
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Thus the first-approximation system for the motion of a physical pendulum (1.3) has, when 
h*>i, four zero and two non-zero EV of different sign, if and only if the Hill Eq.cl.10) has 
a pair of non-zero EV. 

2. Asymptotically pendulum-like motions. In order to study Eq.(l.lC) we shall 
usethesimplest sufficient condition for the existence of a non-zero eigenvalue /2/ 

Q(v) >,O for any 9 (2.1) 

We note that 0 cannot vanish identically. 
We can obtain a set of sufficient conditions for the inequality 12.1) to bold, using the 

following case. We will regard @ as a polynomial in h* of degree not higher than the second, 

and 'p as a parameter. 
If P>O# which happens when either B>i>a or a>i > 3, then the inequality (2.1) 

holds for fairly large hf. We can, for example,assume that 

h*>max{l, ho*) (f2.2) 

ho* = WW+ ~(41” + $1+ V -+ (W’I”~ i- 1W - W + 1~1" + 1 Cl -t- + I] 
The condition @>O means that the centre of mass of the body lies in the plane orthogonal 

to the middle axis of the ellipsoid of inertia. 
We can formulate the following problem: it is required to find a mass distribution such 

that the inequality (2.1) holds for any h*>l. 
First we consider the case when p = 0. In this case the problem has a solution if and 

only if h- -1/2,x= 0. The conditions for the distribution of mass within the body have the 
form 

e,=l,ez=et=O,a=l,B=ZiS (2.3) 

When p>O. the solution of the above problem becomes slightly more complicated, since 
(D is a quadratic function of fi*. In this case it is sufficient to require that the dis- 
criminant A(q) of the quadratic trinomial @(h*) be positive for any 'p: 

A(rp)~(2~+l)~-2O(p-~~+[~2h;I)r+20{p-$)]cos2~-4~(21.~i)sirl2~~O (2.4) 

Calculations show that the inequality (2.4) holds if and only if h= --'/2,~*gSy. From 
this we obtain, using the triangular inequalities for the moments of inertia A,B,C, the 
following restrictions for the distribution of mass: 

and either 

or 

(2.5) 

The fact that the centre of mass of the body need not lie on the principal axis, is of 
interest. 

If p>o, then inequality (2.1) will hold for all ia*>1, and in the case when the largest 
root of the equation 4,(h*)= 0 is less than unity for all values of 'p for which A(cp)>/O. In 
order for this situation to occur, it is sufficient to require that x= 0 and -41* - '1% <h < -- 
'I*. Let us write the corresponding conditions for the parameters of the problem 

el -. 1, e* z e3 z 0 (2.6) 

Applying the first Lyapunov method /2/ and the method of investigating the orbitalstability 
with the help of the linear approximation /6/, we shall formuLate the results obtained in 
terms of the fol>owing assertion. 

Let h* satisfy (2.2) and either (1 - a) (3 - 1) > 0 or h*> 1, and let the parameters ~1, 3,~. 
eir e3 be connected by any one of the following constraints (2,3), (2.5), (2.6). Then: 1) the 
equations in variations (1.41, (1.6) have one positive and one negative eigenvalue; 2) a one- 
parameter family of motions of the body exists, which tend, as the time increases without 
limit, asymptotically to an orbitally unstable rotation (1.3) about the horizontal axis. 

We note that the asymptotically pendulum-like motions of gyroscopes with the mass dis- 
tribution shown above cannot be described by the particular solutions of the Euler-Poisson 
equations known at the present time. 
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COMPRESSION OF A MULTILAYERED MEDIUM UNDER THE ACTION OF 
A VARIABLE EXTERNAL PRESSURE* 

M.YU. IVANOV, V.K. KOROBOV, V.M. NIKOLAYENKO and K.P. STANYUKOVICH 

The solutions of equations describing the system of waves that arise when 
a rigid body is compressed by means of a pressure that varies with time, 
are obtained in the acoustic approximation. The case when the compressed 
medium consists of two layers of different initial density is considered. 
The solutions obtained can be generalized to the case of the compression 
of a multilayer medium. 

1. Let us consider the wave motions in a continuum under the action of a variable 
pressure p =p(t) applied at the boundary of the medium. The equation of state for the rigid 
continuum is usually given in the form p -Ppo= A (p"-pO")+BpZ', with the corresponding equation 
of the adiabatic curve p - p0 = A (p”-po”) + &(pmexp [(s-s&]-porn). We shall replacethelatter by 
the simpler equation of an adiabatic curve 

p = A (s) pv - B (1.1) 

When the deformations of an elastic solid are small, Hooke's law cr=ke holds, where k 
is the bulk modulus e is the deformation, E= (v-uO)IvO= pdp- 1, o is the stress and --o=p. 
We shall require that Eq.(l.l), in the linear approximation with respect to the deformation, 
shall be the same as Hooke's law -o= Ap,'--B - yaps”&. This yields Ap,V = B, yApov = k. We note 
that the velocity of sound co%= yApi-'= k/p. Knowing the bulk modulus or the velocity of sound, 
and specifying the quantity v, we can easily find the constants A and B for use in approxi- 
mating (1.1). 

We shall use the equations describing the propagation of the wave system in Lagrangian 
form, transforming them for convenience to the independent variables h,p: 

N up=r t,,. Zh - u = rpt,,,ltp (1.2) 
$ = ut 

P’ 
sp s 0 

(h= jpPdr. z = P+y(N + 1) ) 
Here r is the Eulerian coordinate, h is the Lagrangian mass coordinate, u is the velocity 

and s is the entropy; the subscript denotes the derivative with respect to the corresponding 
variable; N=O,l,Z for plane, cylindrical and spherical symmetry respectively. 

Using the first and third equation of (1.2), we transform the second equation of (1.2) 
as follows: 

z,, = ” + Ill+ (1.3) 
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